Endocitose e tráfego intracelular de nanomateriais
Resumo
Os avanços recentes da nanotecnologia têm aumentado a utilização de nanomateriais e nanodispositivos para diagnose, terapias e outros fins tecnológicos. O conhecimento da interação entre nanomateriais e meios biológicos permite a descoberta de aplicações mais racionais, podendo ajudar a entender e antever seus efeitos adversos e citotóxicos. A endocitose é um processo biológico dependente de energia que está envolvida na internalização de nanopartículas pelas células, e depende de eventos orquestrados que requerem o funcionamento coordenado dos lipídios e proteínas da membrana plasmática. Estudos que visam investigar em detalhes a endocitose e o tráfego intracelular de nanopartículas são indispensáveis para compreensão de mecanismos celulares ainda inexplorados e permitem projetar novas funções, que consequentemente auxiliam na escolha de aplicações biomédicas da nanotecnologia. Nesse contexto, esta revisão visa conceituar as principais vias de endocitose utilizadas no estudo da internalização de nanomateriais em células eucarióticas. Além disso, alguns destinos intracelulares de nanomateriais serão discutidos para auxiliar nos estudos do processamento celular de nanopartículas e desenvolvimento de novas ferramentas terapêuticas.
Referências
Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007;2(4):MR17-MR71.
Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: An Emerging Discipline Evolving
from Studies of Ultrafine Particles. Environ. Health Perspect. 2005;113(7):823-839.
Oberdörster G, Maynard A, Donaldson K, et al. Principles for characterizing the potential human health effects from exposure to nano materials: elements of a screening strategy. Part. Fibre Toxicol. 2005;2(1):8.
Jermy A. Evolution: Bacterial endocytosis uncovered. Nat. Rev. Microbiol. 2010;8(8):534-535.
Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J. Controlled Release
;145(3):182-195.
Pugliese G de O, de Jesus MB. A nanotecnologia é tudo isso? Ciênc. Hoje. Submetido (em publicação).
Mostowy S. Autophagy and bacterial clearance: a not so clear picture. Cell. Microbiol.
;15(3):395-402.
Randow F. How cells deploy ubiquitin and autophagy to defend their cytosol from bacterial
invasion. Autophagy 2011;7(3):304-309.
Varkouhi AK, Scholte M, Storm G, Haisma HJ. Endosomal escape pathways for delivery of biologicals. J. Controlled Release 2011;151(3):220-228.
Rivolta I, Panariti, Miserocchi. The effect of nanoparticle uptake on cellular behavior: disrupting
or enabling functions? Nanotechnol. Sci. Appl. 2012:87.
Doherty GJ, McMahon HT. Mechanisms of Endocytosis. Annu. Rev. Biochem. 2009;78(1):857-902.
Low PS, Chandra S. Endocytosis in Plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1994;45(1):609-631.
Šamaj J, Read ND, Volkmann D, Menzel D, Baluška F. The endocytic network in plants. Trends Cell Biol. 2005;15(8):425-433.
Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y. Cellular uptake, intracellular trafficking,
and cytotoxicity of nanomaterials. Small 2011;7(10):1322–1337.
Canton I, Battaglia G. Endocytosis at the nanoscale. Chem. Soc. Rev. 2012;41(7):2718.
Jiang X, Dausend J, Hafner M, et al. Specific Effects of Surface Amines on Polystyrene Nanoparticles in their Interactions with Mesenchymal Stem Cells. Biomacromolecules 2010;11(3):748-753.
Roth TF, Porter KR. Yolk protein uptake in the oocyte of the mosquito Aedes aegypti. L. J. Cell
Biol. 1964;20(2):313–332.
Pearse BMF. Coated vesicles from pig brain: Purification and biochemical characterization. J. Mol. Biol. 1975;97(1):93-98.
Von Kleist L, Stahlschmidt W, Bulut H, et al. Role of the Clathrin Terminal Domain in Regulating
Coated Pit Dynamics Revealed by Small Molecule Inhibition. Cell 2011;146(5):841.
Mousavi SA, Malerod L, Berg T, Kjeken R. Clathrin-dependent endocytosis. Biochem. J.
;377(Pt 1):1-16.
Subtil A, Hémar A, Dautry-Varsat A. Rapid endocytosis of interleukin 2 receptors when
clathrin-coated pit endocytosis is inhibited. J. Cell Sci. 1994;107(12):3461–3468.
Higgins MK, McMahon HT. Snap-shots of clathrin-mediated endocytosis. Trends Biochem.
Sci. 2002;27(5):257-263.
Marsh M, McMahon HT. The structural era of endocytosis. Science 1999;285(5425):215–220.
McMahon HT, Boucrot E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 2011;12(8):517-533.
Harush-Frenkel O, Debotton N, Benita S, Altschuler Y. Targeting of nanoparticles to the
clathrin-mediated endocytic pathway. Biochem. Biophys. Res. Commun. 2007;353(1):26-32. doi:10.1016/j.bbrc.2006.11.135.
Kumari S, Mg S, Mayor S. Endocytosis unplugged: multiple ways to enter the cell. Cell Res.
;20(3):256-275. doi:10.1038/cr.2010.19.
Rappoport JZ. Focusing on clathrin-mediated endocytosis. Biochem. J. 2008;412(3):415.
doi:10.1042/BJ20080474.
Paulo CSO, Pires das Neves R, Ferreira LS. Nanoparticles for intracellular-targeted drug delivery. Nanotechnology 2011;22(49):494002. doi:10.1088/0957-4484/22/49/494002.
De Jesus MB. Utilização de ferramentas nanotecnológicas para a indução de morte em células
de câncer de próstata. 2006. Available at: http://www.bv.fapesp.br/pt/bolsas/103845/utilizacao-
de-ferramentas-nanotecnologicas-para--a-inducao-de-morte-em-celulas-de-cancer-de-prostata/. Accessed May 13, 2014.
Radaic A, Paula E de. Desenvolvimento de nanopartículas lipídicas para o carreamento conjunto
do gene para PTEN e mitoxantrona em células de câncer de mama e de próstata. 2012. Available
at: http://www.bibliotecadigital.unicamp.br/document/?code=000897481. Accessed May 22, 2014.
Couet J, Belanger MM, Roussel E, Drolet M-C. Cell biology of caveolae and caveolin. Adv. Drug
Deliv. Rev. 2001;49(3):223-235.
Hansen CG, Nichols BJ. Exploring the caves: cavins, caveolins and caveolae. Trends Cell Biol.
;20(4):177-186.
Lajoie P, Nabi I r. Regulation of raft-dependent endocytosis. J. Cell. Mol. Med. 2007;11(4):644–653.
Dausend J, Musyanovych A, Dass M, et al. Uptake Mechanism of Oppositely Charged Fluorescent
Nanoparticles in HeLa Cells. Macromol. Biosci. 2008;8(12):1135–1143.
Bastiani M, Parton RG. Caveolae at a glance. J. Cell Sci. 2010;123(22):3831-3836.
Hillaireau H, Couvreur P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell. Mol. Life
Sci. 2009;66(17):2873-2896.
Scherer PE, Lewis RY, Volonté D, et al. Cell-type and Tissue-specific Expression of Caveolin-2
Caveolins 1 and 2 Co-localize and Form a Stable Hetero-Oligomeric complex in vivo. J. Biol. Chem. 1997;272(46):29337-29346.
Hill MM, Bastiani M, Luetterforst R, et al. PTRF-Cavin, a Conserved Cytoplasmic Protein
Required for Caveola Formation and Function. Cell 2008;132(1):113-124.
Carver LA, Schnitzer JE. Caveolae: mining little caves for new cancer targets. Nat. Rev. Cancer
;3(8):571-581.
Schnitzer JE, Liu J, Oh P. Endothelial Caveolae Have the Molecular Transport Machinery for
Vesicle Budding, Docking, and Fusion Including VAMP, NSF, SNAP, Annexins, and GTPases. J. Biol.
Chem. 1995;270(24):14399-14404.
Pelkmans L, Püntener D, Helenius A. Local Actin Polymerization and Dynamin Recruitment in
SV40-Induced Internalization of Caveolae. Science 2002;296(5567):535-539.
Parton RG, Richards AA. Lipid Rafts and Caveolae as Portals for Endocytosis: New Insights and
Common Mechanisms. Traffic 2003;4(11):724-738.
Parton RG, Howes MT. Revisiting caveolin trafficking: the end of the caveosome. J. Cell Biol.
;191(3):439-441.
Hayer A, Stoeber M, Ritz D, Engel S, Meyer HH, Helenius A. Caveolin-1 is ubiquitinated and
targeted to intralumenal vesicles in endolysosomes for degradation. J. Cell Biol. 2010;191(3):615-629.
Xiang S, Tong H, Shi Q, et al. Uptake mechanisms of non-viral gene delivery. J. Controlled Release
;158(3):371-378.
De Jesus MB, Radaic A, Hinrichs WLJ, et al. Inclusion of the helper lipid dioleoyl-phosphatidylethanolamine in solid lipid nanoparticles inhibits their transfection efficiency. J. Biomed.
Nanotechnol. 2014;10(2):355-365.
Agarwal A, Lariya N, Saraogi G, Dubey N, Agrawal H, Agrawal G. Nanoparticles as Novel Carrier for Brain Delivery: A Review. Curr. Pharm. Des. 2009;15(8):917-925.
Tuma PL, Hubbard AL. Transcytosis: Crossing Cellular Barriers. Physiol. Rev. 2003;83(3):871-
Falcone S, Cocucci E, Podini P, Kirchhausen T, Clementi E, Meldolesi J. Macropinocytosis:
regulated coordination of endocytic and exocytic membrane traffic events. J. Cell Sci. 2006;119(22):4758-4769.
Jones AT. Macropinocytosis: searching for an endocytic identity and role in the uptake
of cell penetrating peptides. J. Cell. Mol. Med. 2007;11(4):670–684.
Orth JD, McNiven MA. Get Off My Back! Rapid Receptor Internalization through Circular Dorsal
Ruffles. Cancer Res. 2006;66(23):11094-11096.
Mercer J, Helenius A. Virus entry by macropinocytosis. Nat. Cell Biol. 2009;11(5):510-520.
Swanson JA, Watts C. Macropinocytosis. Trends Cell Biol. 1995;5(11):424-428.
Lim JP, Gleeson PA. Macropinocytosis: an endocytic pathway for internalising large gulps.
Immunol. Cell Biol. 2011;89(8):836-843.
Commisso C, Davidson SM, Soydaner-Azeloglu RG, et al. Macropinocytosis of protein is an
amino acid supply route in Ras-transformed cells. Nature 2013;advance online publication.
Gu Z, Noss EH, Hsu VW, Brenner MB. Integrins traffic rapidly via circular dorsal ruffles and
macropinocytosis during stimulated cell migration. J. Cell Biol. 2011;193(1):61-70.
Sigismund S, Confalonieri S, Ciliberto A, Polo S, Scita G, Fiore PPD. Endocytosis and Signaling:
Cell Logistics Shape the Eukaryotic Cell Plan. Physiol. Rev. 2012;92(1):273-366.
Barrias ES, Reignault LC, De Souza W, Carvalho TMU. Trypanosoma cruzi uses macropinocytosis
as an additional entry pathway into mammalian host cell. Microbes Infect. 2012;14(14):1340-1351.
Kerr MC, Teasdale RD. Defining Macropinocytosis. Traffic 2009;10(4):364–371.
Iversen TG, Frerker N, Sandvig K. Uptake of ricinB-quantum dot nanoparticles by a macropinocytosis-like mechanism. J. Nanobiotechnology 2012;10(1):33.
Meng H, Yang S, Li Z, et al. Aspect Ratio Determines the Quantity of Mesoporous Silica Nanoparticle Uptake by a Small GTPase-Dependent Macropinocytosis Mechanism. ACS Nano
;5(6):4434-4447.
Vollrath A, Schallon A, Pietsch C, et al. A toolbox of differently sized and labeled PMMA nanoparticles for cellular uptake investigations. Soft Matter 2012;9(1):99-108.
Damm E-M. Clathrin- and caveolin-1-independent endocytosis: entry of simian virus
into cells devoid of caveolae. J. Cell Biol. 2005;168(3):477-488.
Bandmann V, Homann U. Clathrin-independent endocytosis contributes to uptake of glucose
into BY-2 protoplasts. Plant J. 2012;70(4):578–584.
Cardelli J. Phagocytosis and Macropinocytosis in Dictyostelium: Phosphoinositide-Based Processes, Biochemically Distinct. Traffic 2001;2(5):311–320.
Glodowski DR, Chen CC-H, Schaefer H, Grant BD, Rongo C. RAB-10 Regulates Glutamate
Receptor Recycling in a Cholesterol-dependent Endocytosis Pathway. Mol. Biol. Cell 2007;18(11):4387-4396.
Windler SL, Bilder D. Endocytic Internalization Routes Required for Delta/Notch Signaling.
Curr. Biol. 2010;20(6):538-543.
Prosser DC, Wendland B. Conserved roles for yeast Rho1 and mammalian RhoA GTPases in
clathrin-independent endocytosis. Small GTPases 2012;3(4):229-235.
Sandvig K, van Deurs B. Endocytosis and intracellular sorting of ricin and Shiga toxin. FEBS
Lett. 1994;346(1):99-102.
Kirkham M, Parton RG. Clathrin-independent endocytosis: New insights into caveolae and non-caveolar lipid raft carriers. Biochim. Biophys. Acta BBA - Mol. Cell Res. 2005;1745(3):273-286.
Kirkham M, Fujita A, Chadda R, et al. Ultrastructural identification of uncoated caveolin-
-independent early endocytic vehicles. J. Cell Biol. 2005;168(3):465-476.
Payne CK, Jones SA, Chen C, Zhuang X. Internalization and trafficking of cell surface proteoglycans
and proteoglycan-binding ligands. Traffic Cph. Den. 2007;8(4):389-401.
Mishev K, Dejonghe W, Russinova E. Small Molecules for Dissecting Endomembrane Trafficking: A Cross-Systems View. Chem. Biol. 2013;20(4):475-486.
Radaic A, Pugliese G de O, de Jesus MB. Endocitose de nanopartículas: metodologias e estratégias de estudo. Quím. Nova Submetido. (em publicação).
Brown DA, London E. Functions of Lipid Rafts in Biological Membranes. Annu. Rev. Cell Dev.
Biol. 1998;14(1):111-136.
Cheng Z-J, Singh RD, Sharma DK, et al. Distinct Mechanisms of Clathrin-independent Endocytosis
Have Unique Sphingolipid Requirements. Mol. Biol. Cell 2006;17(7):3197-3210.
Khandelwal P, Ruiz WG, Apodaca G. Compensatory endocytosis in bladder umbrella cells occurs through an integrin-regulated and RhoAand dynamin-dependent pathway. EMBO J. 2010;29(12):1961-1975.
Simons K, Vaz WLC. Model Systems, Lipid Rafts, and Cell Membranes1. Annu. Rev. Biophys. Biomol. Struct. 2004;33(1):269-295.
Orlandi PA, Fishman PH. Filipin-dependent Inhibition of Cholera Toxin: Evidence for Toxin
Internalization and Activation through Caveolae-like Domains. J. Cell Biol. 1998;141(4):905-915.
Singh RD, Puri V, Valiyaveettil JT, Marks DL, Bittman R, Pagano RE. Selective Caveolin-1-dependent Endocytosis of Glycosphingolipids. Mol. Biol. Cell 2003;14(8):3254-3265.
Torgersen ML, Skretting G, Deurs B van, Sandvig K. Internalization of cholera toxin
by different endocytic mechanisms. J. Cell Sci. 2001;114(20):3737-3747.
Otto GP, Nichols BJ. The roles of flotillin microdomains – endocytosis and beyond. J. Cell Sci.
;124(23):3933-3940.
Glebov OO, Bright NA, Nichols BJ. Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nat. Cell Biol. 2006;8(1):46-54.
Bauer M, Pelkmans L. A new paradigm for membrane-organizing and -shaping scaffolds. FEBS Lett. 2006;580(23):5559-5564.
Frick M, Bright NA, Riento K, Bray A, Merrified C, Nichols BJ. Coassembly of Flotillins Induces Formation of Membrane Microdomains, Membrane Curvature, and Vesicle Budding. Curr. Biol. 2007;17(13):1151-1156.
Sorkina T, Caltagarone J, Sorkin A. Flotillins Regulate Membrane Mobility of the Dopamine
Transporter but Are Not Required for Its Protein Kinase C Dependent Endocytosis. Traffic 2013;14(6):709–724.
Vercauteren D, Piest M, van der Aa LJ, et al. Flotillin-dependent endocytosis and a phagocytosis-
like mechanism for cellular internalization of disulfide-based poly(amido amine)/DNA polyplexes. Biomaterials 2011;32(11):3072-3084.
Kasper J, Hermanns MI, Bantz C, et al. Interactions of silica nanoparticles with lung epithelial
cells and the association to flotillins. Arch. Toxicol. 2013;87(6):1053-1065.
Erickson JW, Cerione RA. Multiple roles for Cdc42 in cell regulation. Curr. Opin. Cell Biol.
;13(2):153-157.
Sabharanjak S, Sharma P, Parton RG, Mayor S. GPI-Anchored Proteins Are Delivered to Recycling Endosomes via a Distinct cdc42-Regulated, Clathrin-Independent Pinocytic Pathway. Dev. Cell 2002;2(4):411-423.
Cheng Z-J, Singh RD, Holicky EL, Wheatley CL, Marks DL, Pagano RE. Co-regulation of
Caveolar and Cdc42-dependent Fluid Phase Endocytosis by Phosphocaveolin-1. J. Biol. Chem. 2010;285(20):15119-15125.
Johnson JL, Erickson JW, Cerione RA. C-terminal Di-arginine Motif of Cdc42 Protein Is Essential for Binding to Phosphatidylinositol 4,5-Bisphosphate-containing Membranes and Inducing Cellular Transformation. J. Biol. Chem. 2012;287(8):5764-5774.
Guha A, Sriram V, Krishnan KS, Mayor S. shibire mutations reveal distinct dynamin-independent
and -dependent endocytic pathways in primary cultures of Drosophila hemocytes. J. Cell Sci. 2003;116(16):3373-3386.
Chatterjee S, Smith ER, Hanada K, Stevens VL, Mayor S. GPI anchoring leads to sphingolipid-
-dependent retention of endocytosed proteins in the recycling endosomal compartment. EMBO J. 2001;20(7):1583-1592.
Mayor S, Presley JF, Maxfield FR. Sorting of membrane components from endosomes
and subsequent recycling to the cell surface occurs by a bulk flow process. J. Cell Biol. 1993;121(6):1257-1269.
Nichols BJ, Kenworthy AK, Polishchuk RS, et al. Rapid Cycling of Lipid Raft Markers between
the Cell Surface and Golgi Complex. J. Cell Biol. 2001;153(3):529-542.
Lu Y, Low PS. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv. Drug Deliv. Rev. 2002;54(5):675-693.
Dixit V, Van den Bossche J, Sherman DM, Thompson DH, Andres RP. Synthesis and grafting
of thioctic acid-PEG-folate conjugates onto Au nanoparticles for selective targeting of folate receptor-positive tumor cells. Bioconjug. Chem. 2006;17(3):603-609.
Donaldson JG. Multiple Roles for Arf6: Sorting, Structuring, and Signaling at the Plasma Membrane. J. Biol. Chem. 2003;278(43):41573-41576
Arnaoutova I, Jackson CL, Al-Awar OS, Donaldson JG, Loh YP. Recycling of Raft-associated
prohormone sorting receptor carboxypeptidase E requires interaction with ARF6. Mol. Biol. Cell 2003;14(11):4448-4457.
Naslavsky N, Weigert R, Donaldson JG. Convergence of non-clathrin- and clathrin-derived endosomes involves Arf6 inactivation and changes in phosphoinositides. Mol. Biol. Cell 2003;14(2):417-431.
Brown FD, Rozelle AL, Yin HL, Balla T, Donaldson JG. Phosphatidylinositol 4,5-bisphosphate
and Arf6-regulated membrane traffic. J. Cell Biol. 2001;154(5):1007-1018.
D’Souza-Schorey C, Chavrier P. ARF proteins: roles in membrane traffic and beyond. Nat. Rev.
Mol. Cell Biol. 2006;7(5):347-358.
Hernández-Deviez DJ, Casanova JE, Wilson JM. Regulation of dendritic development by
the ARF exchange factor ARNO. Nat. Neurosci. 2002;5(7):623-624.
Lundmark R, Doherty GJ, Howes MT, et al. The GTPase-Activating Protein GRAF1 Regulates
the CLIC/GEEC Endocytic Pathway. Curr. Biol. 2008;18(22-2):1802-1808.
Naslavsky N, Weigert R, Donaldson JG. Characterization of a Nonclathrin Endocytic Pathway:
Membrane Cargo and Lipid Requirements. Mol. Biol. Cell 2004;15(8):3542-3552.
Caumont A-S, Galas M-C, Vitale N, Aunis D, Bader M-F. Regulated Exocytosis in Chromaffin
Cells Translocation of ARF6 stimulates a plasma membrane-associated phospholipase D. J. Biol. Chem. 1998;273(3):1373-1379.
Melendez AJ, Harnett MM, Allen JM. Crosstalk between ARF6 and protein kinase Cα in FcγRImediated activation of phospholipase D1. Curr. Biol. 2001;11(11):869-874.
O’Luanaigh N, Pardo R, Fensome A, et al. Continual Production of Phosphatidic Acid by
Phospholipase D Is Essential for Antigen-stimulated Membrane Ruffling in Cultured Mast Cells. Mol. Biol. Cell 2002;13(10):3730-3746.
Powner DJ, Payne RM, Pettitt TR, Giudici ML, Irvine RF, Wakelam MJO. Phospholipase
D2 stimulates integrin-mediated adhesion via phosphatidylinositol 4-phosphate 5-kinase Iγb. J. Cell Sci. 2005;118(13):2975-2986.
Leung T, Chen XQ, Manser E, Lim L. The p160 RhoA-binding kinase ROK alpha is a member
of a kinase family and is involved in the reorganization of the cytoskeleton. Mol. Cell. Biol. 1996;16(10):5313-5327.
Lamaze C, Chuang T-H, Terlecky LJ, Bokoch GM, Schmid SL. Regulation of receptor-
-mediated endocytosis by Rho and Rac. Nature 1996;382(6587):177-179.
Lamaze C, Dujeancourt A, Baba T, Lo CG, Benmerah A, Dautry-Varsat A. Interleukin 2
Receptors and Detergent-Resistant Membrane Domains Define a Clathrin-Independent Endocytic Pathway. Mol. Cell 2001;7(3):661-671.
Garnacho C, Shuvaev V, Thomas A, et al. RhoA activation and actin reorganization involved
in endothelial CAM-mediated endocytosis of anti-PECAM carriers: critical role for tyrosine 686 in the cytoplasmic tail of PECAM-1. Blood 2008;111(6):3024-3033.
Muro S, Wiewrodt R, Thomas A, et al. A novel endocytic pathway induced by clustering
endothelial ICAM-1 or PECAM-1. J. Cell Sci. 2003;116(8):1599-1609.
Luzio JP, Gray SR, Bright NA. Endosome–lysosome fusion. Biochem. Soc. Trans. 2010;38(6):1413.
Luzio JP, Pryor PR, Bright NA. Lysosomes: fusion and function. Nat. Rev. Mol. Cell Biol.
;8(8):622-632.
Luzio JP, Hackmann Y, Dieckmann NMG, Griffiths GM. The Biogenesis of Lysosomes and
Lysosome-Related Organelles. Cold Spring Harb. Perspect. Biol. 2014;6(9):a016840.
Agarwal R, Roy K. Intracellular delivery of polymeric nanocarriers: a matter of size, shape,
charge, elasticity and surface composition. Ther. Deliv. 2013;4(6):705-723.
Boddapati SV, D’Souza GGM, Erdogan S, Torchilin VP, Weissig V. Organelle-Targeted Nanocarriers: Specific Delivery of Liposomal Ceramide to Mitochondria Enhances Its Cytotoxicity in Vitro and in Vivo. Nano Lett. 2008;8(8):2559-2563.
Douglas KL, Piccirillo CA, Tabrizian M. Cell line-dependent internalization pathways and
intracellular trafficking determine transfection efficiency of nanoparticle vectors. Eur. J. Pharm. Biopharm. 2008;68(3):676-687.
Traub LM. Tickets to ride: selecting cargo for clathrin-regulated internalization. Nat. Rev. Mol.
Cell Biol. 2009;10(9):583-596.
Minchin RF, Yang S. Endosomal disruptors in non-viral gene delivery. Expert Opin. Drug Deliv.
;7(3):331-339.
Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit J-P. Progress in developing cationic
vectors for non-viral systemic gene therapy against cancer. Biomaterials 2008;29(24–25):3477-3496.
Lunov O, Syrovets T, Loos C, et al. Amino-Functionalized Polystyrene Nanoparticles Activate the NLRP3 Inflammasome in Human Macrophages. ACS Nano 2011;5(12):9648-9657.
Nel AE, Mädler L, Velegol D, et al. Understanding biophysicochemical interactions at the
nano–bio interface. Nat. Mater. 2009;8(7):543-557.
Ogris M, Carlisle RC, Bettinger T, Seymour LW. Melittin Enables Efficient Vesicular
Escape and Enhanced Nuclear Access of Nonviral Gene Delivery Vectors. J. Biol. Chem. 2001;276(50):47550-47555.
Jin H, Lovell JF, Chen J, et al. Cytosolic delivery of LDL nanoparticle cargo using photochemical
internalization. Photochem. Photobiol. Sci. 2011;10(5):810-816.
Paillard A, Hindré F, Vignes-Colombeix C, Benoit J-P, Garcion E. The importance of endo-
-lysosomal escape with lipid nanocapsules for drug subcellular bioavailability. Biomaterials 2010;31(29):7542-7554.
Cartiera MS, Johnson KM, Rajendran V, Caplan MJ, Saltzman WM. The uptake and intracellular
fate of PLGA nanoparticles in epithelial cells. Biomaterials 2009;30(14):2790-2798.
Liu P, Sun Y, Wang Q, Sun Y, Li H, Duan Y. Intracellular trafficking and cellular uptake mechanism
of mPEG-PLGA-PLL and mPEG-PLGA-PLL-Gal nanoparticles for targeted delivery to hepatomas. Biomaterials 2014;35(2):760-770.