Uso de antibióticos em aquacultura e resistência bacteriana: impacto em saúde pública

S. Gastalho, G. Silva, Fernando Ramos

Resumo


Os antibióticos têm sido utilizados em produção animal, incluindo aquacultura, para prevenção e tratamento de doenças infecciosas. A sua administração tem impacto sobre o ambiente e pode conduzir ao aparecimento de resistência antimicrobiana, tanto em bactérias comensais do intestino humano e animal, como em bactérias do meio ambiente, com a possível disseminação de genes de resistência entre diversas populações bacterianas. A capacidade de transferência horizontal de genes de resistência aos antimicrobianos de bactérias ambientais aquáticas, como Aeromonas salmonicida, para bactérias, como Escherichia coli, tem sido documentada. A transmissão do animal para o homem pode ocorrer por vários meios, incluindo contacto directo com animais e fezes, bem como ingestão de alimentos e água.

O uso excessivo e não controlado de antimicrobianos em animais tem consequências na saúde pública, tendo transformado a resistência aos antimicrobianos num preocupante problema global. As mudanças no sistema de produção podem aumentar a importância da difusão de resistências no meio ambiente, se a produção se tornar mais integrada ou mais intensiva em áreas geográficas de menores dimensões.

Assim, no presente trabalho realça-se a importância da monitorização contínua da administração de antibióticos em aquacultura.

Palavras-chave


Aquacultura, resistência antimicrobiana, Aeromonas, Escherichia coli

Texto Completo:

PDF PDF

Referências


Tavechio W, Guidelli G, Portz L. Alternativas para a prevenção e o controlo de patogenos em piscicultura. 2009;35(2):335–41.

- Read P, Fernandes T. Management of environmental impacts of marine aquaculture in Europe. Aquaculture. 2003 Oct;226(1-4):139–63.

- Burridge L, Weis JS, Cabello F, Pizarro J, Bostick K. Chemical use in salmon aquaculture: A review of current practices and possible environmental effects. Aquaculture. Elsevier B.V.; 2010 Aug;306(1-4):7–23.

- Cabello FC. Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environmental microbiology. 2006 Jul;8(7):1137–44.

- Guardabassi L, Kruse H. Princípios da Utilização Prudente e Racional de Antimicrobianos em Animais. Guia de Antimicrobianos em Veterinária. 2010. 17–30.

- Gordon L, Giraud E, Ganière J-P, Armand F, Bouju-Albert a, de la Cotte N, et al. Antimicrobial resistance survey in a river receiving effluents from freshwater fish farms. Journal of applied microbiology. 2007 Apr;102(4):1167–76.

- Leston S, Nunes M, Lemos MFL, Jorge G, Pardal MÂ, Ramos F. The veterinary drug use and environmental. In: Borgearo RS, editor. Animal Feed: Types, nutrition and safety. Nova Science Publishers, Inc.; 2011. 61–83.

- Heuer OE, Kruse H, Grave K, Collignon P, Karunasagar I, Angulo FJ. Human health consequences of use of antimicrobial agents in aquaculture. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2009 Oct;49(8):1248–53.

- FAO F. The state of world fisheries and aquaculture. Rome; 2012. 209.

- Smith, Peter R, . Guidelines for antimicrobial use in aquaculture. In L. B. J. and H. K. Luca Guardabassi, editores. Guide to antimicrobial use in animals. Blackwell; 2008. 207– 18.

- FAO. Aquaculture topics and activities. 2013. Disponível em: http://www.fao.org/fishery/topic/13542/en

- Romero J, Feijoó C, Navarrete P. Antibiotics in aquaculture – Use, abuse and alternatives; In: Carvalho E, editor. Health and Environment in Aquaculture. 2012.

- Muchlisin ZA. Aquaculture. In: Smiljanic T, editor. Croatia 2012. 1–400.

- Sørum H. Antimicrobial drug resistance in fish pathogens. In: Aarestrup FM, editor. Antimicrobial resistance in bacteria of animal origin. Washington, D. C.; 2006. 213–37.

- Torrecillas S, Makol A. Effects on mortality and stress response in European sea bass, Dicentrarchus labrax (L.), fed mannan oligosaccharides (MOS) after Vibrio anguillarum exposure. Journal of fish diseases. 2012. 591–602.

- Cantas L, Fraser T. The culturable intestinal microbiota of triploid and diploid juvenile Atlantic salmon (Salmo salar)-a comparison of composition and drug resistance. BMC veterinary research. BioMed Central Ltd; 2011;7(1):71.

- McEwen, M. AF, David J. Monitoring of antimicrobial resistance in animals: principles and practices. In: Frank M. Washington, editor. Antimicrobial resistance in bacteria of animal origin. Washington, D. C.; 2006. 397–413.

- Lees P, Shojaee Aliabadi F. Rational dosing of antimicrobial drugs: animals versus humans. International journal of antimicrobial agents. 2002 Apr;19(4):269–84.

- Aarestrup FM. The origin, evolution, and local and global dissemination of antimicrobial resistance. In: Aarestrup FM, editor. Antimicrobial resistance in bacteria of animal origin. Washington, D. C.; 2006. 339–59.

- Ghenghesh K, Ahmed S. Aeromonas-associated infections in developing countries. Infection Developing Countries. 2008;2:81–98.

- Deodhar LP, Saraswathi K, Varudkar A. Aeromonas spp. and their association with human diarrheal disease. Journal of clinical microbiology. 1991 May;29(5):853–6.

- Cantas L, Midtlyng PJ, Sørum H. Impact of antibiotic treatments on the expression of the R plasmid tra genes and on the host innate immune activity during pRAS1 bearing Aeromonas hydrophila infection in zebrafish (Danio rerio). BMC Microbiology. BioMed Central Ltd; 2012;12(1):37.

- Rogol M, Sechter I. Pril-xylose-ampicillin agar, a new selective medium for the isolation of Aeromonas hydrophila. Journal of medical microbiology. 1979:229–31.

- Pablos M, Rodríguez-Calleja JM, Santos J a, Otero A, García-López M-L. Occurrence of motile Aeromonas in municipal drinking water and distribution of genes encoding virulence factors. International journal of food microbiology. Elsevier B.V.; 2009 Oct;135(2):158–64.

- Barcellos L, Kreutz L, Rodrigues B, Santos L, Motta A, Ritter F, et al. Aspectos macro e microscópico das lesões e perfil de resistência a antimicrobianos. 2008;34(3):355–63.

- Jacobs L, Chenia HY. Characterization of integrons and tetracycline resistance determinants in Aeromonas spp. isolated from South African aquaculture systems. International journal of food microbiology. 2007 Mar;114(3):295–306.

- Picão RC, Poirel L, Demarta A, Petrini O, Corvaglia AR, Nordmann P. Expanded-spectrum beta-lactamase PER-1 in an environmental Aeromonas media isolate from Switzerland. Antimicrobial agents and chemotherapy. 2008 Sep;52(9):3461–2.

- Carvalho MJ, Martínez-Murcia A, Esteves AC, Correia A, Saavedra MJ. Phylogenetic diversity, antibiotic resistance and virulence traits of Aeromonas spp. from untreated waters for human consumption. International journal of food microbiology. Elsevier B.V.; 2012 Oct;159(3):230–9.

- Mendonça N, Leitão J, Manageiro V, Ferreira E, Caniça M. Spread of extended-spectrum beta-lactamase CTX-M-producing Escherichia coli clinical isolates in community and nosocomial environments in Portugal. Antimicrobial agents and chemotherapy. 2007 Jun;51(6):1946–55.

- Hernould M, Gagné S, Fournier M, Quentin C, Arpin C. Role of the AheABC efflux pump in Aeromonas hydrophila intrinsic multidrug resistance. Antimicrobial agents and chemotherapy. 2008 Apr;52(4):1559–63.

- Lynch JP, Clark NM, Zhanel GG. Evolution of antimicrobial resistance among Enterobacteriaceae (focus on extended spectrum b-lactamases and carbapenemases). 2013;199–210.

- Bergey D, Breed R, Murray E, Smith N. Bergey’s manual of determinative bacteriology. 1957;1–8.

- Stone ND, O’Hara CM, Williams PP, McGowan JE, Tenover FC. Comparison of disk diffusion, VITEK 2, and broth microdilution antimicrobial susceptibility test results for unusual species of Enterobacteriaceae. Journal of clinical microbiology. 2007 Feb;45(2):340–6.

- Freney J, Husson MO, Gavini F, Madier S, Martra a, Izard D, et al. Susceptibilities to antibiotics and antiseptics of new species of the family Enterobacteriaceae. Antimicrobial agents and chemotherapy. 1988 Jun;32(6):873–6.

- Paterson DL. Resistance in gram-negative bacteria: Enterobacteriaceae. American journal of infection control. 2006 Jun;34(5 Suppl 1):S20–8; discussion S64–73.

- Nordmann P, Naas T, Poirel L. Global spread of Carbapenemase-producing Enterobacteriaceae. Emerging infectious diseases. 2011 Oct;17(10):1791–8.

- EFSA, ECDC. The European Union Summary Report on antimicrobial resistance in Antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2011. EFSA Journal. 2013;11(5).

- Picão RC, Cardoso JP, Campana EH, Nicoletti AG, Petrolini FVB, Assis DM, et al. The route of antimicrobial resistance from the hospital effluent to the environment: focus on the occurrence of KPC-producing Aeromonas spp. and Enterobacteriaceae in sewage. Diagnostic Microbiology and Infectious Disease. Elsevier Inc.; 2013;1–6.

- Jiang H, Tang D, Liu Y, Zhang X, Zeng Z, Xu L, et al. Prevalence and characteristics of b-lactamase and plasmid-mediated quinolone resistance genes in Escherichia coli isolated from farmed fish in China. journal of Antimicrobial Chemotherapy. 2012;67:2350–3.

Machado E, Coque TM, Cantón R, Sousa JC, Peixe L. Commensal Enterobacteriaceae as reservoirs of extended-spectrum beta-lactamases, integrons, and sul genes in Portugal. Frontiers in Microbiology. 2013;4:1–7.

- Yagoub SO. Isolation of Enterobacteriaceae and Pseudomonas spp. from raw fish sold in fish market in Khartoum state. Journal of bacteriology Research. 2009;1(7):85–8.

- Vieira RHSDF, Carvalho EMR, Carvalho FCT, Silva CM, Sousa O V, Rodrigues DP. Antimicrobial susceptibility of Escherichia coli isolated from shrimp (Litopenaeus vannamei) and pond environment in northeastern Brazil. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes. 2010 Apr;45(3):198–203.

- Regulamento da Comissão (CE) N.o 2073/2005 de 15 de Novembro de 2005. 1–26.

- Sabat G, Rose P, Hickey WJ, Harkin JM. Selective and Sensitive Method for PCR Amplification of Escherichia coli 16S rRNA Genes in Soil. Applied and environmental microbiology. 2000;66(2).

- OIE. OIE list of antimicrobials of veterinary importance. Paris; 2007. 1–9.

- Pato MVV. Bases genéticas e mecanismos da resistência aos antibióticos. Susceptibilidade aos antibióticos. Manual de labotarório. Copyright. 1989. 61–73.

- Stratton IV CW. Mechanisms of action for antimicrobial agents: General principles and mechanisms for selected classes of antibiotics. In: Lorian V, editor. Antibiotics in laboratory medicine. 4th ed. 1996. 579–603.

- Kocsis B, Mazzariol A, Kocsis E, Koncan R, Fontana R, Cornaglia G. Prevalence of plasmid-mediated quinolone resistance determinants in Enterobacteriaceae strains isolated in North-East Italy. Antimicrobial Original Researsh Paper. 2013;21:36–40.

- Nested EW, Roberts CE, Pearsall NN, Anderson DG, Nester MT. Antimicrobial Medicine. In: Terrance S, editor. Microbiology - A human perspective. 2nd ed. 1998. 447–70.

- Marshall BM, Levy SB. Food animals and antimicrobials: impacts on human health. Clinical microbiology reviews. 2011 Oct;24(4):718–33.

- Rodríguez-Blanco A. Integrating conjugative elements as vectors of antibiotic, mercury, and quaternary ammonium compound resistance in marine aquaculture environments. Antimicrobial agents and chemoterapy. 2012;2619–26.

- Nested EW, Roberts CE, Pearsall NN, Anderson DG, Nester MT. Baterial genetics. In: Terrance S, editor. Microbiology - A human perspective. 1998. 167–80.

- Hirsch R, Ternes T, Haberer K, Kratz KL. Occurrence of antibiotics in the aquatic environment. The Science of the total environment. 1999 Jan ;225(1-2):109–18.

- Regitano JB, Leal RMP. Comportamento e impacto ambiental de antibióticos usados na produção animal brasileira. Revista Brasileira de Ciência do Solo. 2010 Jun;34(3):601–16.

- Regulamento da Comissão (CEE) n.o 2377/90 de 26 de Junho de 1990. 1-143.

- Kümmerer K. Resistance in the environment. The Journal of antimicrobial chemotherapy. 2004 Aug;54(2):311–20.


Apontamentos

  • Não há apontamentos.


Acta Farmacêutica Portuguesa - ISSN: 2182-3340